sábado, 28 de marzo de 2009


CELULA

Célula:
Unidad fundamental de vida. Es un cuerpo con volumen que transforma energía y es capaz de transferir información.
Este concepto surge en este siglo ( en el s. XVIII se estudiaba ) pero se revoluciona con el descubrimiento del microscopio electrónico, que tiene una gran resolución ( puede separar 2 puntos muy cercanos y así ver con mayor profundidad ). La rama que se ocupa de la célula es la Citología, muy nueva y avanzada.
En los 30 se dudaba de lo que tenía la célula, pero hacen los postulados de la teoría celular, con Schaum y Swan, que dice que la célula es la unidad anatómica, o la unidad morfológica, o la unidad de origen ( porque si se divide una célula, ninguna parte podrá sobrevivir por si sola ). En 1952 se añde el postulado de que la célula es la unidad patológica.
Todo ser vivo está formado al menos por una célula.
La forma depende de su envoltura externa ( membrana fundamental), que esta en todas las células. Si la membrana fundamental es gruesa, la célula tiene una forma definitiva y si no, no. Por ello hay 2 tipos.
Amorfa: ( la forma cambia ) ej: glóbulos blancos y amibas. Es mas delgada y elástica.
Forma definida: tiene todo tipo de formas, como de forma estrelladaà neuronas. Es mas gruesa y menos elástica.
El tamaño promedio en una célula es el tamaño microscópico pero tambien hay más grandes. Desde 20 micros hasta 1500 micros.

MEMBRANA PLASMATICA

Membrana Plasmática
Cada célula se encuentra rodeada por una membrana plasmática que la rodea, le da forma, es especifica de la funcion de esta y la relaciona con el medio extracelular.
Actúa como una barrera de permeabilidad que permite a la célula mantener una composición citoplasmática distinta del medio extracelular.
Contiene enzimas, receptores y antígenos que desempeñan un papel central en la interaccion de la celulas con otras celulas, así como con las hormonas y otros agentes reguladores presentes en él liquido extracelular.
Estructura de la membrana
Los constituyentes más abundantes son las proteínas y fosfolípidos. La molécula fofolípidos presentan una cabeza polar y dos cadenas hidrofóbicas, constituidas por ácidos grasos.
Su presencia fue confirmada con él ME dé transmicion, así la membrana plasmática en cortes transversales apareció como una triple lamina dos elctrodensas y una electrolucida, Robertson designo a esta triple lamina unidad de membrana. Como químicamente evidenciaba el predominio de lípidos y proteínas, se dieron a la búsqueda de un modelo teórico que explicara esta estructura.
Singer y Nicholson propusieron el modelo del mosaico fluido, este es molecular y teórico y se basa en datos de la estructura, la química y la biofísica pero no puede ser visualizado por ME actuales. Propusieron el ensamble de las moléculas de lípidos y proteínas, la hemicapa externa seria totalmente fosfolipídica y la hemicapa interna estaría formada por fosfolípidos y moléculas de colesterol intercaladas, esta es asimétrica por que los fosfolípidos de la hemicapa externa difieren de la interna
Proteínas de la membrana
Proteínas integrales intrínsecas = incrustadas total o parcialmente en el espesor de la bicapa. Se mueven lateralmente en la membrana.
Funciones: Funcion estructural
Funcion de bomba
Portadoras
Conductoras
Enzimáticas
Productoras de anticuerpos
Proteínas periféricas o extrínsecas = adosadas por el lado externo y/o interno de la bicapa. Son las más móviles.
Funciones: * Uniones transitorias a ciertas sustancias: recibir información, ligar sustancias que han de penetrar en la membrana, participar en reacciones bioquímicas.
* Uniones estables con otras membranas o estructuras intercelulares
* Uniones facultativas, mas o menos estables para fijar elementos que ingresan a la célula.
Entre las proteínas de la membrana se incluyen enzimas, proteínas transportadoras y receptores para hormonas y neurotransmisores.
Glucoproteínas: están situadas casi exclusivamente en la superficie de la membrana. La carga negativa de la superficie de la célula es atribuible al ácido siálico, con carga negativa de glucolípidos y glucoproteínas.
Composición lipídica
Los lípidos forman una barrera continua, mantienen la individualidad celular.
Fosfolípidos principales: los más abundantes suelen ser los que contienen colinas, las lecitinas y las esfingomielinas, aminofosfolipidos, fosfatidilserina y fosfatidiletanolamina. Otros, fosfatadilglicerol, fosfatatidilinositol y la cardiolipina.
Colesterol: es cuantitativamente importante
Glucolipidos: se encuentran principalmente en las membranas plasmáticas, en las que sus porciones glucídicas sobresalen de la superficie externa de la membrana. (cerebrosidos y gangliosidos)
Funciones de la membrana plasmática
Recepción de la información: las proteínas intrínsecas pueden tener capacidad de captar determinadas sustancias especificas y a partir de ellas transmitir la información celular. Las proteínas intrínsecas con tales cualidades se conocen como receptores.
Especializaciones
Mantenimiento de la identidad celular
- fluidez
-asimetría química y funcional
-especifícidad proteica
- polarización
- semipermeabilidad
Permeabilidad : se refiere a la posibilidad de transferencia e intercambio de sustancias a traves de la membrana esta efectua el control cualitativo y cuantitativo de la entrada y salida de sustancias y es selectiva porque permite solo el pasaje de ciertas sustancias.
Transporte a traves de membrana
Transporte pasivo
Difusión
Simple :mecanismo de transporte pasivo, sin consumo de energía celular. A favor del gradiente de concentración. Involucra a moléculas e iones. Las sustancias liposolubles pueden atravesar fácilmente las membranas hasta que el soluto se equilibre a ambos lados de la bicapa. Las moléculas hidrofóbicas, moléculas polares de pequeño tamaño pero no cargadas se difunden mas rápidamente.
Las moléculas no polares, oxigeno, dióxido de carbono, atraviesan directamente la bicapa por su liposolubilidad.
Las moléculas polares atraviesan canales formados por las proteínas. Algunas proteínas transmembrana presentan una estructura tridimensional en la cual los radicales polares de ciertos aminoácidos se disponen formando un canal hidrofílico que puede ser atravesado por agua(osmosis) y por iones hidratados como el sodio, potasio. Algunos canales se mantienen permanentemente abiertos otros solo lo hacen cuando llega una molécula mensajera que se une a una zona receptora especifica e induce a una variación de la configuración que abre el canal, o bien cuando ocurren cambios en la polaridad de la membrana.
El pasaje de agua se denomina osmosis y el soluto diálisis.
Osmosis :se define como el flujo de agua a traves de membranas semipermeables desde un compartimento de baja concentración hacia uno de concentración mayor. La osmosis se produce porque la presencia de solutos reduce el potencial químico del agua que tiende a fluir desde las zonas donde su potencial químico es mayor hacia uno menor.
Facilitada: mecanismo pasivo a favor del gradiente de concentración que facilita el transporte de determinadas sustancias que en general son insolubles en lípidos, monosacáridos, ácidos grasos, aminoacidos. Requiere transportadores especiales
Esta difusión es mediada por un transportador o carriers. Depende de proteínas integrales de la membrana, cada proteína transportadora es especifica de una sola molécula o de un grupo de moléculas de estructura relacionada.
La proteína transportadora expone los sitios de reconocimiento a una de las caras de la membrana, cuando la molécula por transportar se une a ella cambia la conformación y expone los sitios hacia el lado opuesto donde se libera la molécula.
Transporte activo
Es el transporte neto de un soluto en contra de un gradiente de concentración, no puede producirse espontáneamente, sino que requiere una fuente de energía para conducir una soluto a traves de la membrana celular desde un compartimento de baja concentración a uno de alta. Es necesario la participación de proteínas integrales de la membrana
Transporte activo 1ª
Dependen de fuentes primarias de energía tales como la hidrólisis de ATP Bomba de sodio y potasio
Es un mecanismo para sacar iones de sodio de la membrana celular y al mismo tiempo introducir iones potasio a la célula. Esta bomba se encuentra en todas la celulas del cuerpo y se encarga de mantener las diferencias de concentración sodio – potasio a traves de la membrana y establecer un potencial eléctrico negativo en el interior de las celulas.
La proteína acarreadora es un complejo de dos proteínas globulares separadas una con mayor peso molecular y otra más pequeña. La de mayor tamaño presenta tres características especificas para la funcion de bomba:
Cuenta con tres sitios receptores para unir iones sodio en su porcion situada en el interior de la célula.
Tiene dos sitios receptores para iones potasio en su lado exterior
La porcion interna de esta proteína adyacente o cercana a los sitios de unión para sodio, muestra actividad de ATPasa.
La bomba ATPasaNa-K, la proteína transportadora es una ATPasa que intercambia tres iones de sodio intercelulares por 2 iones de potasio extracelulares mientras hidroliza ATP para obtener energía.

SINDROMES DE ALTERACIONES GENETICAS

Anomalías genéticas, en medicina, enfermedades producidas como consecuencia de anomalías hereditarias de la estructura genética. Algunas alteraciones genéticas se manifiestan desde el nacimiento, como las anomalías congénitas, mientras que otras se desarrollan durante la infancia o la edad adulta. Además de una causa genética, algunos de estos procesos se ven afectados por influencias ambientales como la dieta o el estilo de vida. Los cambios genéticos que no son heredados (mutaciones somáticas) pueden causar o contribuir a alteraciones como el cáncer. Algunas alteraciones genéticas pueden beneficiarse de la terapia génica, que existe gracias a la ingeniería genética.

2
Alteraciones de un solo gen
Versión para imprimir la sección
Algunas alteraciones genéticas son consecuencia de una mutación en un solo gen, que se traduce en la ausencia o alteración de la proteína correspondiente. Esto puede alterar algún proceso metabólico o del desarrollo y producir una enfermedad. La mayor parte de las alteraciones de un solo gen tienen una herencia de tipo recesivo, lo que significa que las dos copias del mismo gen (procedentes de cada ascendiente, respectivamente) deben ser defectuosas para que aparezca la enfermedad. Los padres no padecen la enfermedad, pero son portadores de ella. Un ejemplo es la fibrosis quística. Las alteraciones de un solo gen con herencia dominante requieren la presencia de una sola copia del gen defectuoso para que aparezca la enfermedad, como sucede en la corea de Huntington. Debido a que los varones sólo poseen un cromosoma X frente a los dos que poseen las mujeres, las enfermedades de un solo gen recesivas localizadas en el cromosoma X afectan con mayor frecuencia a los hombres que a las mujeres. Un ejemplo es el daltonismo. Otros ejemplos de alteración de un solo gen son la distrofia muscular de Duchenne, la hipercolesterolemia familiar (aumento del nivel de colesterol), la hemofilia A, la neurofibromatosis tipo 1, la fenilcetonuria, la anemia de células falciformes, la enfermedad de Tay-Sachs y la talasemia.

Los tests genéticos pueden identificar mutaciones en los genes alterados, permitiendo el diagnóstico preciso en los pacientes con alteraciones de un solo gen. Estos tests también permiten el diagnóstico de los portadores asintomáticos de enfermedades genéticas e incluso la identificación de individuos no afectados pero que desarrollarán la enfermedad.

Una forma especial de enfermedad de un solo gen es la que se presenta cuando la mutación reside en un gen de la mitocondria de la célula; las mitocondrias son corpúsculos celulares portadores de su propia información genética. Las mitocondrias de los embriones fecundados proceden todas del óvulo y no de los espermatozoides. Por tanto las alteraciones genéticas transmitidas por las mitocondrias afectan a todos los descendientes de las mujeres afectadas, pero no a los descendientes de los varones afectados. Un ejemplo de esto es la neuropatía óptica hereditaria de Lever, un trastorno caracterizado por la atrofia del nervio óptico.

3
Alteraciones cromosómicas
Versión para imprimir la sección
Algunas alteraciones genéticas no afectan a genes concretos sino a todo el cromosoma o a un segmento cromosómico. Por ejemplo, la presencia de tres copias del cromosoma 21 produce el síndrome de Down, pese a que no existe ninguna alteración de los genes de los cromosomas. Otras alteraciones cromosómicas por duplicación son el síndrome de Edwards, en el que aparecen 3 copias del cromosoma 18, y el síndrome de Patau, que se caracteriza porque los individuos que lo padecen tienen 3 copias del cromosoma 13. Las alteraciones cromosómicas pueden consistir en duplicación (como en los síndromes descritos anteriormente), pérdida (como ocurre en el síndrome de Turner, en el que falta un cromosoma X y las personas que lo padecen tienen un fenotipo femenino), ruptura (como en el síndrome del maullido de gato que se origina por una deleción parcial del brazo corto del cromosoma 5) o reorganización del material cromosómico. En conjunto, las alteraciones cromosómicas afectan a 7 de cada 1.000 nacidos vivos y son responsables de cerca del 50% de los abortos espontáneos en los tres primeros meses de embarazo.

4
Alteraciones multifactoriales
Versión para imprimir la sección
En este grupo tampoco existen errores concretos en la información genética, sino una combinación de pequeñas variaciones que en conjunto producen o predisponen al desarrollo del proceso. Algunos de estos procesos son más frecuentes en ciertas familias aunque no demuestran un patrón claro de herencia. Los factores ambientales como la dieta o el estilo de vida pueden también influir en el desarrollo de la enfermedad. Ejemplos de alteraciones multifactoriales son la enfermedad arterial coronaria y la diabetes mellitus.

LA CELULA CLIP.